STUDIES ON β -LACTAM ANTIBIOTICS V[†] EFFECT ON ANTIMICROBIAL ACTIVITY OF 2- AND/OR 3-METHYL GROUP (S)

IN A CEPHEM NUCLEUS

Takao Takaya*, Zenzaburo Tozuka, Hisashi Takasugi, Takashi Kamiya and Hiroshi Nakano

Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan

(Received for publication February 6, 1982)

Synthesis and effect on antibacterial activity of 2- and/or 3-methyl group(s) in the cephalosporins $(4a \sim c)$ with (Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetyl side chain were described.

In a previous paper¹⁾ we reported the influence on antibacterial activity of the substituents at the 3position in the cephalosporin nucleus having (Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetyl side chain. Among these cephalosporins 3-methyl analog (4d) was found to have intrinsic activity against Gram-negative bacteria in spite of its poor activity against Gram-positive bacteria. Therefore we intended to improve the 3-methyl cephalosporin (4d) in antimicrobial activity, especially against Grampositive bacteria.

In this paper we will describe the synthesis and *in vitro* antibacterial activity of the 2- and/or 3methylcephalosporin analogs $(4a \sim c)$ with the same 7-acyl group as ceftizoxime.^{1,2)}

Chemistry

Semisynthetic cephalosporins $(3a \sim c)$ were prepared by acylation of 7β -aminocephalosporanic acid derivatives $(2a \sim c)$ with (Z)-2-(2-formamido-4-thiazolyl)-2-(methoxyimino)acetic acid^{1,3)} followed by subsequent removal of the formyl group, as outlined in Scheme 1. Activation of the acid (1) with VILSMEIER reagent prepared from phosphoryl chloride (POCl₃) and dimethylformamide (DMF) was satisfactorily employed for the above coupling reaction. Acylation of the 7-aminocephalosporins ($2a \sim c$) was carried out in excellent yields under non-aqueous condition by trimethylsilylation using *N*-(trimethylsilyl)acetamide (MSA). Deprotection of the *N*-formyl cephems ($3a \sim c$) proceeded smoothly at room temperature in a methanolic solution containing conc. hydrochloric acid to give 7β -[(Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetamido]-3-cephem-4-carboxylic acid derivatives ($4a \sim c$). The structure of **3** and **4** was determined by analysis of NMR spectra (Table 1). Macroporous non-ionic adsorption resin was effectively employed for the purification of **4**.

Biological Activity

In vitro antimicrobial activity of 4 was listed in Table 2. Contrary to our expectation, introduction of a methyl group with lipophilic character into the 2α -position of the 3-methyl analog (4d) causes a significant decrease in activity of 2,3-dimethyl analog (4c). However, removal of the 3-methyl group

^{*} To whom correspondence should be addressed.

[†] Paper IV. ΤΑΚΑΥΑ, Τ.; Η. ΤΑΚΑSUGI, Τ. MASUGI, Η. KOCHI & H. NAKANO: Studies on β-lactam antibiotics. IV. Structure-activity relationships of 7β -[(Z)-2-alkoxyimino-2-(2-amino-4-thiazolyl)acetamido]-3cephem-4-carboxylic acids. J. Antibiotics 34: 1357~1359, 1981

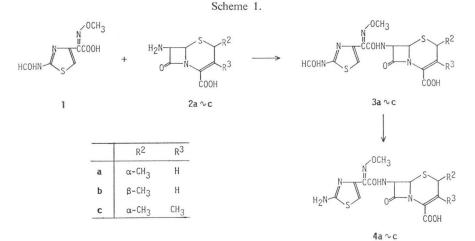
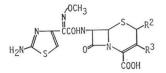


Table 1. NMR spectral data of $3a \sim c$ and $4a \sim c$.


			NMR (DMSO- d_6 , ppm)									
(Compoun R²	ds R³	CONH 1H,d J=8Hz	Ring proton of C₅ 1H,s	C7-H 1H,dd J=5,8Hz	C_6-H 1H,d J=5Hz	C ₃ –H or C ₃ –CH ₃	С ₂ –Н 1Н	C_2 -CH ₃ 3H,d J=7Hz	OCH ₃ 3H,s	CHONH 1H,br.s	CHO 1H,s
3a	α -CH ₃	Н	9.68	7.40	5.94	5.14	6.58 1H,d J=7Hz	3.90 m	1.46	3.90	12.54	8.52
3b	β -CH ₃	Η	9.70	7.45	5.87	5.31	6.31 1H,d J=2Hz	4.00 m	1.44	3.93	12.70	8.57
3c	α -CH ₈	CH_3	9.53	7.33	5.78	5.17	2.02 3H,s	3.53 m	1.48	3.87	12.50	8.57
4a	α -CH ₃	Η	9.62	6.77	5.89	5.12	6.57 1H,d J=7Hz	3.90 m	1.44	3.84		
4b	β-CH ₃	Η	9.60	6.73	5.80	5.28	6.28 1H,d <i>J</i> =2Hz	3.90 m	1.42	3.92	—	_
4c	α-CH ₃	CH_3	9.63	6.76	5.73	5.18	1.98 3H,m	3.57 q J=7H	1.44 z	3.82		

from the dimethyl analog (4c) results in a dramatic enhancement in activity of 2α -methyl analog (4a: FR-13374)⁴). In contrast, 2β -methyl enantiomer (4b) exhibits remarkably less activity than the 2α -methyl enantiomer (4a) does. This fact may imply that configuration of the substituent at the 2-position in a cephem nucleus is very important for antibacterial activity. Furthermore, removal of the 2-methyl group from 4a leads to non-substituted analog (4e), ceftizoxime^{1,2}) which gives rise to a further slight improvement in activity. Thus, improvement of the 3-methyl analog (4d) in antimicrobial activity against both Gram-positive and Gram-negative bacteria was achieved.

Experimental

NMR spectra were recorded at 60 MHz on a JNM-PMX 60 NMR spectrometer and at 100 MHz on a JEOL-MH 100 NMR spectrometer using Me_4Si as an internal standard. IR spectra were taken on a Hitachi 260–10 spectrophotometer or a Shimadzu IR-420 spectrophotometer.

Table 2. Antibacterial activity of 4.

	C I		MIC (μ g/ml)								
	Compound R ²	R ⁸	<i>S. a</i>	ureus 32	<i>E. 0</i> 32	coli 28*	K. pneumoniae 12	P. mirabilis 1	P. vulgaris 2		
4a	α-CH ₃	Н	12.5	6.25	0.1	0.1	0.1	≦0.025	0.05		
4b	β -CH ₃	Н	100	25	3.13	3.13	3.13	0.39	0.39		
4c	α -CH ₃	CH_3	>100	>100	12.5	6.25	6.25	1.56	3.13		
4d	Н	CH_3	100	100	1.56	0.78	0.39	0.2	0.2		
4e	H H (ceftizoxime)		6.25	3.13	0.1	0.1	0.05	≦0.025	≦0.025		

* Cephalosporinase producer.

Materials

The following compounds were prepared according to the methods of the literature: 2a,⁵⁾ 2b,⁵⁾ 2c,⁶⁾ 4d,¹⁾ and 4e.¹⁾

General Procedure for Acylation of the 7β -Aminocephalosporanic Acids ($2a \sim c$)

To a solution of DMF (7.7 mmole) in THF (25 ml) was dropwise added POCl₃ (7.7 mmole) at $-10 \sim 0^{\circ}$ C under stirring, and the mixture was stirred at this temperature for 20~30 minutes to prepare VILSMEIER reagent. To the above mixture was added the *N*-formyl acid (1) (7 mmole) under ice-cooling and the mixture was stirred at this temperature for 30 minutes to produce an activated acid solution of 1. To a solution of the 7 β -aminocephalosporanic acid (2a ~ c) (7 mmole) and MSA (42 mmole) in Ac-OEt (30~40 ml) was added the above activated acid solution at -20° C, and the reaction mixture was stirred at $-20 \sim 0^{\circ}$ C for one hour. To the reaction mixture was added a mixture of AcOEt and H₂O, and the AcOEt layer was separated. After H₂O was added to the AcOEt layer, the mixture was adjusted to pH 7.5 with saturated NaHCO₃ solution. The separated aqueous layer was acidified to pH 2.0 with 10% HCl and the acidified solution was extracted with AcOEt. The AcOEt layer was washed with brine and dried (MgSO₄). The solvent was evaporated and the residue was triturated with Et₂O to afford a *N*-formylcephalosporin (3).

General Procedure for Deformylation of the *N*-Formylcephalosporins $(3a \sim c)$

To a mixture of 3 (5 mmole) in MeOH ($20 \sim 30$ ml) and THF ($10 \sim 30$ ml) was added conc. HCl ($15 \sim 20$ mmole) at room temperature and the mixture was stirred at this temperature for $2 \sim 5$ hours. The reaction mixture was evaporated and the residue was dissolved in a saturated NaHCO₃ solution. The solution was washed with AcOEt and the aqueous layer was acidified to pH $2.5 \sim 3.0$ with 10% HCl under ice-cooling. The precipitate was filtered, washed with cold H₂O, and dried (P₂O₅) to afford 4.

Purification of 4

To a suspension of the crude 4 in H_2O (10 times volume of 4) was adjusted to pH 6 with a saturated NaHCO₃ solution under ice-cooling, and the solution was subjected to column chromatography on macroporous non-ionic adsorption resin Diaion HP-20 (Mitsubishi Chem. Ind. Ltd.). The column was eluted with H_2O and the eluate was acidified to pH 2.5 with 10% HCl under ice-cooling. The precipitate was filtered, washed with H_2O and dried *in vacuo* (P_2O_5) to afford pure 4.

Antibiotic Susceptibility

All the *in vitro* antibacterial activity is given as the minimum inhibitory concentration (MIC) in μ g/ml, required to prevent growth of the bacterial culture. MIC was determined by agar dilution method

using heart infusion agar (Difco) after incubation at 37°C for 20 hours and the inoculum size about 10⁸ C.F.U./ml. *Escherichia coli* 28 is a cephalosporin-resistant strain.

Acknowledgement

We are grateful to Drs. M. NISHIDA and T. KAMIMURA for providing the biological data and to Dr. Y. MORI-MOTO and his coworkers for spectral measurements.

References

- ΤΑΚΑΥΑ, Τ.; Η. ΤΑΚΑSUGI, Τ. MASUGI, Τ. CHIBA, Η. KOCHI, Τ. ΤΑΚΑΝΟ & Η. ΝΑΚΑΝΟ: Structure-activity relationships of sodium 7β-[(Z)-2-amino-4-thiazolyl)-2-(methoxyimino)acetamido]-3-cephem-4-carboxylate (ceftizoxime) and its related compounds. Nippon Kagaku Kaishi 1981: 785~804, 1981
- 2) TAKAYA, T.; T. KAMIMURA, H. KOJO, Y. MINE, S. NISHIDA, S. GOTO & K. KUWAHARA: Ceftizoxime (FK 749), a new parenteral cephalosporin: *in vitro* and *in vivo* antibacterial activities. Current Chemotherapy and Infectious Disease, Vol. 1, p. 255, The American Society for Microbiology, Washington, DC, 1980
- TAKAYA, T.; T. MASUGI, H. TAKASUGI & H. KOCHI: 3,7-Disubstituted syn-isomers of 3,7-cephem-4carboxylic acid derivatives. Belg. 852,427, Sep. 14, 1977 (Chem. Abst. 89: 59892h, 1978)
- 4) MINE, Y.; T. MURAKAWA, T. KAMIMURA, T. TAKAYA, M. NISHIDA, S. GOTO & S. KUWAHARA: A new parenteral cephalosporin. 1. *In vitro* and *in vivo* antimicrobial activities. 17th Intersci. Conf. Antimicrob. Agents & Chemother., Abstract No. 147, New York, October 12~14, 1977
- 5) TAKAI, K.; Unpublished results
- WRIGHT, I. G.; C. W. AHBROOK, T. GOODSON, G. V. KAISHER & E. M. VAN HEYNIGEN: Chemistry of cephalosporin antibiotics. 23. 2-Methyl- and 2-methylenecephalosporins. J. Med. Chem. 14: 420~426, 1971